فرآیند تحلیل سلسله مراتبی یا AHP – بخش ششم

ماتریس ناسازگار و خصوصیات آن

در حالت کلی می توان ثابت کرد که اگر λi مقادیر ویژه ماتریس مقایسات زوجی A باشد مجموع مقادیر آنها برابر n است.

21 thumb فرآیند تحلیل سلسله مراتبی یا AHP   بخش ششم

همچنین بزرگترین مقدار ویژه ماتریس مقایسه زوجی A همواره بزرگتر یا مساوی n است. در این صورت برخی از λها منفی خواهند بود. لذا:

22 thumb فرآیند تحلیل سلسله مراتبی یا AHP   بخش ششم

هر ماتریس سازگار دارای خصوصیات زیر است:

  1. مقدار وزن عناصر برابر مقدار نرمالیزه هر عنصر می باشد.
  2. مقدار ویژه برابر طول ماتریس است (AW = nW)
  3. مقدار ناسازگاری در این ماتریس برابر صفر است.

قضیه3

اگر عناصر ماتریس مقدار کمی از حالت سازگاری فاصله بگیرند، مقدار ویژه آن نیز مقدار کمی از حالت سازگاری خود فاصله خواهد گرفت. لذا اگر AW = λ.W که در آن W,λبه ترتیب بردار ویژه و مقدار ویژه ماتریس A می باشد. یک مقدار ویژه برابر n بوده (بزرگترین مقدار ویژه آن نیز مقدار کمی از حالت سازگاری خود فاصله خواهد گرفت.

که در آن W و λ به ترتیب بردار ویژه و مقدار ویژه ماتریس A می باشند. یک مقدار ویژه برابر n بوده (بزرگترین مقدار ویژه) و بقیه آنها برابر صفر هستند. بنابراین در این حالت می توان نوشت:

23 thumb فرآیند تحلیل سلسله مراتبی یا AHP   بخش ششم

در حالتی که ماتریس مقایسه زوجی A ، ناسازگار باشد طبق قضیه 3

24 thumb فرآیند تحلیل سلسله مراتبی یا AHP   بخش ششم

وقتی λmax مقداری از n فاصله بگیرد مقدار λmax − n می تواند میزان سازگاری را نمایش دهد که برای نرمال کردن این شاخص ، عبارت زیر را بعنوان میزان ناسازگاری معرفی می کنیم.

25 thumb فرآیند تحلیل سلسله مراتبی یا AHP   بخش ششم

الگوریتم محاسبه نرخ ناسازگاری یک ماتریس مقایسات زوجی

  • ماتریس مقایسات زوجی A را تشکیل می دهیم
  • بردار وزن W را مشخص نمایید
  • مقدار λmaxرا محاسبه کنید.
  • مقدار ناسازگاری را از رابطه زیر محاسبه می کنیم:

26 thumb فرآیند تحلیل سلسله مراتبی یا AHP   بخش ششم

  • نرخ ناسازگاری را از فرمول زیر بدست آورید:

27 thumb فرآیند تحلیل سلسله مراتبی یا AHP   بخش ششم

که در آن شاخص I.I.R بسته به ابعاد ماتریس که n فرض شده است، مطابق جدول زیر قابل استخراج است:

28 thumb فرآیند تحلیل سلسله مراتبی یا AHP   بخش ششم

این جدول به این شکل بدست آمده است که ماتریس های مقایسات زوجی، به شکل رندوم با ابعاد ماتریسی مختلف تولید شده و سپس نرخ ناسازگاری آنها محاسبه می شود که باید دید آیا از حدود 10 درصد کمتر هستند یا خیر(مشابه تکنیک bootstrap ) میانگین نرخ ناسازگاری برای نمونه های 500 تایی از ابعاد ماتریسی که در جدول زیر آمده اند در سطر مربوط به نرخ ناسازگاری مشخص شده اند. برای ابعاد بالاتر نیز به همین روش می توان مقدار I.I.R را محاسبه نمود و در محاسبه نرخ ناسازگاری ماتریس مقایسات زوجی به کار برد.

در خصوص محاسبه بزرگترین مقدار ویژه می توان تکنیک های متفاوتی از روشهای آنالیز عددی را به کار برد که در هر گام از تکرارهای الگوریتم های آن به مقدار دقیق مورد نظر نزدیک می شود. یک الگوریتم ساده برای این کار به صورت زیر است

  • با ضرب بردار W در ماتریس A تخمین مناسبی از λmaxبدست می آوریم.
  • با تقسیم مقادیر به دست آمده برای λmax .W بر W مربوطه تخمین هایی از λmaxرامحاسبه نمایید.
  • متوسط λmaxهای به دست آمده را پیدا کنید.

محاسبه نرخ ناسازگاری یک درخت سلسله مراتبی

برای محاسبه نرخ ناسازگاری یک سلسله مراتبی شاخص ناسازگاری هر ماتریس را در وزن عنصر مربوطه اش ضرب نموده و حاصل جمع آنها را به دست می آوریم . این حاصل جمع را I.I. می نامیم . همچنین وزن عناصر را در ماتریس های مربوطه ضرب کرده و مجموعشان را clip image001 thumb2 فرآیند تحلیل سلسله مراتبی یا AHP   بخش ششمنامگذاری می کنیم . حاصل تقسیمclip image002 thumb فرآیند تحلیل سلسله مراتبی یا AHP   بخش ششم نرخ ناسازگاری سلسله مراتبی را می دهد.

منبع: موسسه تحقیق در عملیات بهین گستر گیتی (www.Behin-Gostar.com)

, Студия Topodin, Продвижение сайтов по продаже межкомнатных дверей Опубликовано: 5 февраля 2014 Конкуренция в сфере торговли межкомнатными дверями и стальными конструкциями очень велика

ترتیبی که سایت تخصصی جی.آی.اس برای مطالعه سری مکانیابی با AHP پیشنهاد می کند:

مطالب مرتبط

نظر بدهید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *